Cremona's table of elliptic curves

Curve 67184n1

67184 = 24 · 13 · 17 · 19



Data for elliptic curve 67184n1

Field Data Notes
Atkin-Lehner 2- 13+ 17+ 19- Signs for the Atkin-Lehner involutions
Class 67184n Isogeny class
Conductor 67184 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 70656 Modular degree for the optimal curve
Δ -74850500608 = -1 · 220 · 13 · 172 · 19 Discriminant
Eigenvalues 2-  2  0  2  6 13+ 17+ 19- Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-1368,-23056] [a1,a2,a3,a4,a6]
Generators [10222441740:-104793385472:85766121] Generators of the group modulo torsion
j -69173457625/18274048 j-invariant
L 11.114320805331 L(r)(E,1)/r!
Ω 0.38713707526892 Real period
R 14.354503243626 Regulator
r 1 Rank of the group of rational points
S 0.99999999999824 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 8398a1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations