Cremona's table of elliptic curves

Curve 67270r1

67270 = 2 · 5 · 7 · 312



Data for elliptic curve 67270r1

Field Data Notes
Atkin-Lehner 2+ 5- 7- 31- Signs for the Atkin-Lehner involutions
Class 67270r Isogeny class
Conductor 67270 Conductor
∏ cp 10 Product of Tamagawa factors cp
deg 537600 Modular degree for the optimal curve
Δ 4624045053635770 = 2 · 5 · 75 · 317 Discriminant
Eigenvalues 2+  1 5- 7- -1 -1  8  7 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-84108,-8807112] [a1,a2,a3,a4,a6]
j 74140932601/5210170 j-invariant
L 2.8158492341813 L(r)(E,1)/r!
Ω 0.2815849226816 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 2170e1 Quadratic twists by: -31


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations