Cremona's table of elliptic curves

Curve 67320bi3

67320 = 23 · 32 · 5 · 11 · 17



Data for elliptic curve 67320bi3

Field Data Notes
Atkin-Lehner 2- 3- 5+ 11- 17- Signs for the Atkin-Lehner involutions
Class 67320bi Isogeny class
Conductor 67320 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 4296084397008307200 = 210 · 37 · 52 · 11 · 178 Discriminant
Eigenvalues 2- 3- 5+ -4 11- -2 17-  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-408963,-13733138] [a1,a2,a3,a4,a6]
Generators [-333:9248:1] Generators of the group modulo torsion
j 10133238887216644/5754999888825 j-invariant
L 4.376298047849 L(r)(E,1)/r!
Ω 0.20388626333148 Real period
R 1.341525532501 Regulator
r 1 Rank of the group of rational points
S 1.0000000000189 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 22440j3 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations