Cremona's table of elliptic curves

Curve 690i1

690 = 2 · 3 · 5 · 23



Data for elliptic curve 690i1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 23- Signs for the Atkin-Lehner involutions
Class 690i Isogeny class
Conductor 690 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 240 Modular degree for the optimal curve
Δ -317400000 = -1 · 26 · 3 · 55 · 232 Discriminant
Eigenvalues 2- 3- 5+  0  2  0  6  4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,134,-604] [a1,a2,a3,a4,a6]
j 265971760991/317400000 j-invariant
L 2.7680260466756 L(r)(E,1)/r!
Ω 0.92267534889188 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 5520l1 22080t1 2070g1 3450a1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations