Cremona's table of elliptic curves

Curve 69264k2

69264 = 24 · 32 · 13 · 37



Data for elliptic curve 69264k2

Field Data Notes
Atkin-Lehner 2+ 3- 13+ 37- Signs for the Atkin-Lehner involutions
Class 69264k Isogeny class
Conductor 69264 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 4.5371722725941E+20 Discriminant
Eigenvalues 2+ 3-  0  4  6 13+  2 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-24398399055,-1466864874069442] [a1,a2,a3,a4,a6]
Generators [898555675214177438146144060234364155003749226053153897820457884376525208870788596543768595889451875594608459446:-231790708054991097306398344952635485211120575103135489543586370688521146233685941065327403703302955246969992184573:4214042009289791669937744838087836746526925469277049267667432062229104585796567718991784463665765277508568] Generators of the group modulo torsion
j 8606770235119240834099339906000/2431183702307373 j-invariant
L 8.3571478078002 L(r)(E,1)/r!
Ω 0.012079785486105 Real period
R 172.9572892129 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 34632e2 23088d2 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations