Cremona's table of elliptic curves

Curve 69575f1

69575 = 52 · 112 · 23



Data for elliptic curve 69575f1

Field Data Notes
Atkin-Lehner 5+ 11- 23+ Signs for the Atkin-Lehner involutions
Class 69575f Isogeny class
Conductor 69575 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 17160 Modular degree for the optimal curve
Δ 1018647575 = 52 · 116 · 23 Discriminant
Eigenvalues -1  0 5+  1 11-  1  0  5 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-265,-558] [a1,a2,a3,a4,a6]
j 46305/23 j-invariant
L 1.2458262816027 L(r)(E,1)/r!
Ω 1.2458262828677 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 69575ba1 575a1 Quadratic twists by: 5 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations