Cremona's table of elliptic curves

Curve 69825bt1

69825 = 3 · 52 · 72 · 19



Data for elliptic curve 69825bt1

Field Data Notes
Atkin-Lehner 3- 5+ 7- 19- Signs for the Atkin-Lehner involutions
Class 69825bt Isogeny class
Conductor 69825 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 30720 Modular degree for the optimal curve
Δ -1178296875 = -1 · 34 · 56 · 72 · 19 Discriminant
Eigenvalues  0 3- 5+ 7- -3  2 -7 19- Hecke eigenvalues for primes up to 20
Equation [0,1,1,-233,2069] [a1,a2,a3,a4,a6]
Generators [-17:37:1] [13:37:1] Generators of the group modulo torsion
j -1835008/1539 j-invariant
L 10.434483405953 L(r)(E,1)/r!
Ω 1.4109652340394 Real period
R 0.46220501904657 Regulator
r 2 Rank of the group of rational points
S 0.99999999999817 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 2793b1 69825a1 Quadratic twists by: 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations