Cremona's table of elliptic curves

Curve 71148ct1

71148 = 22 · 3 · 72 · 112



Data for elliptic curve 71148ct1

Field Data Notes
Atkin-Lehner 2- 3- 7- 11- Signs for the Atkin-Lehner involutions
Class 71148ct Isogeny class
Conductor 71148 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 55296 Modular degree for the optimal curve
Δ 76530203904 = 28 · 3 · 77 · 112 Discriminant
Eigenvalues 2- 3- -3 7- 11- -2 -1  0 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-1437,-16689] [a1,a2,a3,a4,a6]
Generators [-22:69:1] Generators of the group modulo torsion
j 90112/21 j-invariant
L 5.524845660537 L(r)(E,1)/r!
Ω 0.78840871958691 Real period
R 3.5037953813421 Regulator
r 1 Rank of the group of rational points
S 0.99999999998916 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 10164m1 71148cr1 Quadratic twists by: -7 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations