Cremona's table of elliptic curves

Curve 7140n1

7140 = 22 · 3 · 5 · 7 · 17



Data for elliptic curve 7140n1

Field Data Notes
Atkin-Lehner 2- 3- 5- 7+ 17- Signs for the Atkin-Lehner involutions
Class 7140n Isogeny class
Conductor 7140 Conductor
∏ cp 72 Product of Tamagawa factors cp
deg 6912 Modular degree for the optimal curve
Δ 309395192400 = 24 · 33 · 52 · 73 · 174 Discriminant
Eigenvalues 2- 3- 5- 7+ -2  0 17- -2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-2605,-44500] [a1,a2,a3,a4,a6]
Generators [-37:51:1] Generators of the group modulo torsion
j 122234448510976/19337199525 j-invariant
L 5.0733940128359 L(r)(E,1)/r!
Ω 0.67537469631685 Real period
R 0.41733163008982 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 28560db1 114240l1 21420j1 35700l1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations