Cremona's table of elliptic curves

Curve 72384be2

72384 = 26 · 3 · 13 · 29



Data for elliptic curve 72384be2

Field Data Notes
Atkin-Lehner 2+ 3- 13+ 29- Signs for the Atkin-Lehner involutions
Class 72384be Isogeny class
Conductor 72384 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 1175247470592 = 214 · 38 · 13 · 292 Discriminant
Eigenvalues 2+ 3- -2  0  2 13+ -6 -2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-3409,-57265] [a1,a2,a3,a4,a6]
Generators [-43:108:1] Generators of the group modulo torsion
j 267492843088/71731413 j-invariant
L 6.4665455039284 L(r)(E,1)/r!
Ω 0.63730593630084 Real period
R 1.268336197672 Regulator
r 1 Rank of the group of rational points
S 0.99999999998691 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 72384bx2 9048c2 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations