Cremona's table of elliptic curves

Curve 72624ba1

72624 = 24 · 3 · 17 · 89



Data for elliptic curve 72624ba1

Field Data Notes
Atkin-Lehner 2- 3- 17- 89- Signs for the Atkin-Lehner involutions
Class 72624ba Isogeny class
Conductor 72624 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 430080 Modular degree for the optimal curve
Δ 994237684383744 = 232 · 32 · 172 · 89 Discriminant
Eigenvalues 2- 3- -2  4  4 -6 17-  4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-82624,-9042124] [a1,a2,a3,a4,a6]
Generators [12873:209440:27] Generators of the group modulo torsion
j 15229570973927617/242733809664 j-invariant
L 8.169723133081 L(r)(E,1)/r!
Ω 0.28186563689861 Real period
R 7.2461148717389 Regulator
r 1 Rank of the group of rational points
S 0.9999999999545 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 9078f1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations