Cremona's table of elliptic curves

Curve 7350b1

7350 = 2 · 3 · 52 · 72



Data for elliptic curve 7350b1

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 7+ Signs for the Atkin-Lehner involutions
Class 7350b Isogeny class
Conductor 7350 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 1440 Modular degree for the optimal curve
Δ -2881200 = -1 · 24 · 3 · 52 · 74 Discriminant
Eigenvalues 2+ 3+ 5+ 7+ -4 -1 -2  1 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-25,85] [a1,a2,a3,a4,a6]
Generators [6:-17:1] Generators of the group modulo torsion
j -30625/48 j-invariant
L 2.3643095211846 L(r)(E,1)/r!
Ω 2.2815568975931 Real period
R 0.17271170720301 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 58800hy1 22050dv1 7350ct1 7350ba1 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations