Cremona's table of elliptic curves

Curve 73920gh1

73920 = 26 · 3 · 5 · 7 · 11



Data for elliptic curve 73920gh1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7+ 11+ Signs for the Atkin-Lehner involutions
Class 73920gh Isogeny class
Conductor 73920 Conductor
∏ cp 9 Product of Tamagawa factors cp
deg 248832 Modular degree for the optimal curve
Δ -152092588032000 = -1 · 214 · 39 · 53 · 73 · 11 Discriminant
Eigenvalues 2- 3- 5+ 7+ 11+  4  3 -7 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-8981,-680781] [a1,a2,a3,a4,a6]
Generators [142:963:1] Generators of the group modulo torsion
j -4890195460096/9282994875 j-invariant
L 7.5369128366169 L(r)(E,1)/r!
Ω 0.23085152198067 Real period
R 3.6275903764605 Regulator
r 1 Rank of the group of rational points
S 1.0000000001143 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 73920s1 18480ce1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations