Cremona's table of elliptic curves

Curve 75810bh1

75810 = 2 · 3 · 5 · 7 · 192



Data for elliptic curve 75810bh1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 7- 19+ Signs for the Atkin-Lehner involutions
Class 75810bh Isogeny class
Conductor 75810 Conductor
∏ cp 126 Product of Tamagawa factors cp
deg 987840 Modular degree for the optimal curve
Δ -387410975253267840 = -1 · 27 · 37 · 5 · 79 · 193 Discriminant
Eigenvalues 2+ 3- 5+ 7-  3 -1  0 19+ Hecke eigenvalues for primes up to 20
Equation [1,0,1,88931,28160312] [a1,a2,a3,a4,a6]
Generators [448:12344:1] Generators of the group modulo torsion
j 11340428292410309/56482136645760 j-invariant
L 6.0709060528545 L(r)(E,1)/r!
Ω 0.21608573935058 Real period
R 0.22297535327483 Regulator
r 1 Rank of the group of rational points
S 1.0000000000192 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 75810cd1 Quadratic twists by: -19


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations