Cremona's table of elliptic curves

Curve 76096h3

76096 = 26 · 29 · 41



Data for elliptic curve 76096h3

Field Data Notes
Atkin-Lehner 2- 29+ 41- Signs for the Atkin-Lehner involutions
Class 76096h Isogeny class
Conductor 76096 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 2.2004767515249E+20 Discriminant
Eigenvalues 2-  0  2  0  0  2  2  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-3803564,-2764545168] [a1,a2,a3,a4,a6]
Generators [1295628347470:9060690251027:571787000] Generators of the group modulo torsion
j 185714563485930761736/6715322117690761 j-invariant
L 7.2101058784737 L(r)(E,1)/r!
Ω 0.10834688802873 Real period
R 16.636624291763 Regulator
r 1 Rank of the group of rational points
S 1.0000000001679 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 76096g3 38048b3 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations