Cremona's table of elliptic curves

Curve 76296q1

76296 = 23 · 3 · 11 · 172



Data for elliptic curve 76296q1

Field Data Notes
Atkin-Lehner 2- 3+ 11- 17+ Signs for the Atkin-Lehner involutions
Class 76296q Isogeny class
Conductor 76296 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 1658880 Modular degree for the optimal curve
Δ 256704302240990208 = 210 · 33 · 113 · 178 Discriminant
Eigenvalues 2- 3+  2  2 11- -4 17+  6 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-3475032,-2492090532] [a1,a2,a3,a4,a6]
Generators [415832980:94742729257:8000] Generators of the group modulo torsion
j 187761599684068/10385793 j-invariant
L 7.3127070820837 L(r)(E,1)/r!
Ω 0.11057610387973 Real period
R 11.022132909282 Regulator
r 1 Rank of the group of rational points
S 1.0000000001048 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 4488h1 Quadratic twists by: 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations