Cremona's table of elliptic curves

Curve 77520cm4

77520 = 24 · 3 · 5 · 17 · 19



Data for elliptic curve 77520cm4

Field Data Notes
Atkin-Lehner 2- 3- 5+ 17+ 19- Signs for the Atkin-Lehner involutions
Class 77520cm Isogeny class
Conductor 77520 Conductor
∏ cp 40 Product of Tamagawa factors cp
Δ 23065218283991040 = 212 · 320 · 5 · 17 · 19 Discriminant
Eigenvalues 2- 3- 5+ -4 -4 -6 17+ 19- Hecke eigenvalues for primes up to 20
Equation [0,1,0,-157496,-22973676] [a1,a2,a3,a4,a6]
Generators [-233:1062:1] [-188:162:1] Generators of the group modulo torsion
j 105481210840266169/5631156807615 j-invariant
L 10.167941156461 L(r)(E,1)/r!
Ω 0.24044878861013 Real period
R 4.2287346155325 Regulator
r 2 Rank of the group of rational points
S 0.99999999998779 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 4845b3 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations