Cremona's table of elliptic curves

Curve 79800bb4

79800 = 23 · 3 · 52 · 7 · 19



Data for elliptic curve 79800bb4

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 7+ 19- Signs for the Atkin-Lehner involutions
Class 79800bb Isogeny class
Conductor 79800 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 55860000000000 = 211 · 3 · 510 · 72 · 19 Discriminant
Eigenvalues 2- 3+ 5+ 7+  4 -6 -6 19- Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-2979408,1980436812] [a1,a2,a3,a4,a6]
Generators [1033:1986:1] Generators of the group modulo torsion
j 91403708841493778/1745625 j-invariant
L 4.4720056899995 L(r)(E,1)/r!
Ω 0.45139595229389 Real period
R 4.9535287881294 Regulator
r 1 Rank of the group of rational points
S 1.0000000002088 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 15960g4 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations