Cremona's table of elliptic curves

Curve 79935a8

79935 = 3 · 5 · 732



Data for elliptic curve 79935a8

Field Data Notes
Atkin-Lehner 3+ 5+ 73+ Signs for the Atkin-Lehner involutions
Class 79935a Isogeny class
Conductor 79935 Conductor
∏ cp 4 Product of Tamagawa factors cp
Δ 61290361647045 = 34 · 5 · 736 Discriminant
Eigenvalues -1 3+ 5+  0  4  2 -2  4 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-11510751,-15036340536] [a1,a2,a3,a4,a6]
Generators [-8288680509545167518103204258:4134789142344291876165727881:4230562684973287378694824] Generators of the group modulo torsion
j 1114544804970241/405 j-invariant
L 3.3365190910964 L(r)(E,1)/r!
Ω 0.081964093420499 Real period
R 40.70708224488 Regulator
r 1 Rank of the group of rational points
S 0.9999999997306 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 15a5 Quadratic twists by: 73


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations