Cremona's table of elliptic curves

Curve 80465m1

80465 = 5 · 7 · 112 · 19



Data for elliptic curve 80465m1

Field Data Notes
Atkin-Lehner 5- 7+ 11- 19- Signs for the Atkin-Lehner involutions
Class 80465m Isogeny class
Conductor 80465 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 34560 Modular degree for the optimal curve
Δ -1178088065 = -1 · 5 · 7 · 116 · 19 Discriminant
Eigenvalues -1 -1 5- 7+ 11-  4  3 19- Hecke eigenvalues for primes up to 20
Equation [1,1,1,-305,-2760] [a1,a2,a3,a4,a6]
j -1771561/665 j-invariant
L 1.121428049892 L(r)(E,1)/r!
Ω 0.56071400410435 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 665c1 Quadratic twists by: -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations