Cremona's table of elliptic curves

Curve 80475c1

80475 = 3 · 52 · 29 · 37



Data for elliptic curve 80475c1

Field Data Notes
Atkin-Lehner 3+ 5+ 29- 37+ Signs for the Atkin-Lehner involutions
Class 80475c Isogeny class
Conductor 80475 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 30720 Modular degree for the optimal curve
Δ -86349675 = -1 · 3 · 52 · 292 · 372 Discriminant
Eigenvalues -2 3+ 5+ -1 -6  1 -2 -1 Hecke eigenvalues for primes up to 20
Equation [0,-1,1,-58,498] [a1,a2,a3,a4,a6]
Generators [-9:14:1] [3:-19:1] Generators of the group modulo torsion
j -878080000/3453987 j-invariant
L 4.2889334647982 L(r)(E,1)/r!
Ω 1.671771287636 Real period
R 0.64137563204648 Regulator
r 2 Rank of the group of rational points
S 0.99999999995793 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 80475k1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations