Cremona's table of elliptic curves

Curve 8085v1

8085 = 3 · 5 · 72 · 11



Data for elliptic curve 8085v1

Field Data Notes
Atkin-Lehner 3- 5- 7- 11+ Signs for the Atkin-Lehner involutions
Class 8085v Isogeny class
Conductor 8085 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 13440 Modular degree for the optimal curve
Δ 499375886625 = 32 · 53 · 79 · 11 Discriminant
Eigenvalues  1 3- 5- 7- 11+ -4 -2  4 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-9483,352993] [a1,a2,a3,a4,a6]
j 2336752783/12375 j-invariant
L 2.8062937912001 L(r)(E,1)/r!
Ω 0.93543126373335 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 129360fs1 24255bj1 40425n1 8085e1 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations