Cremona's table of elliptic curves

Curve 81090k1

81090 = 2 · 32 · 5 · 17 · 53



Data for elliptic curve 81090k1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 17- 53- Signs for the Atkin-Lehner involutions
Class 81090k Isogeny class
Conductor 81090 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 168960 Modular degree for the optimal curve
Δ -6029690220000 = -1 · 25 · 39 · 54 · 172 · 53 Discriminant
Eigenvalues 2+ 3- 5+  1 -3 -6 17-  1 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-1080,119200] [a1,a2,a3,a4,a6]
Generators [-49:254:1] [5:-340:1] Generators of the group modulo torsion
j -191202526081/8271180000 j-invariant
L 7.5949533924475 L(r)(E,1)/r!
Ω 0.62800091792614 Real period
R 0.7558660719677 Regulator
r 2 Rank of the group of rational points
S 1.0000000000064 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 27030m1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations