Cremona's table of elliptic curves

Curve 8214h1

8214 = 2 · 3 · 372



Data for elliptic curve 8214h1

Field Data Notes
Atkin-Lehner 2- 3+ 37+ Signs for the Atkin-Lehner involutions
Class 8214h Isogeny class
Conductor 8214 Conductor
∏ cp 46 Product of Tamagawa factors cp
deg 3398112 Modular degree for the optimal curve
Δ -1.5674484301099E+22 Discriminant
Eigenvalues 2- 3+  4  3  5 -3 -3  7 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-249592686,1517642768811] [a1,a2,a3,a4,a6]
j -670206957616537490521/6109179936768 j-invariant
L 5.1481764279424 L(r)(E,1)/r!
Ω 0.11191687886831 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 65712bd1 24642j1 222e1 Quadratic twists by: -4 -3 37


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations