Cremona's table of elliptic curves

Curve 83248p2

83248 = 24 · 112 · 43



Data for elliptic curve 83248p2

Field Data Notes
Atkin-Lehner 2+ 11- 43- Signs for the Atkin-Lehner involutions
Class 83248p Isogeny class
Conductor 83248 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ -811723921344512 = -1 · 211 · 118 · 432 Discriminant
Eigenvalues 2+  0  0  0 11-  4 -6  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-13915,1509354] [a1,a2,a3,a4,a6]
Generators [-55:1452:1] Generators of the group modulo torsion
j -82127250/223729 j-invariant
L 5.9733203827986 L(r)(E,1)/r!
Ω 0.4432525336087 Real period
R 1.6845138852262 Regulator
r 1 Rank of the group of rational points
S 1.0000000004343 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 41624l2 7568e2 Quadratic twists by: -4 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations