Cremona's table of elliptic curves

Curve 83600cm1

83600 = 24 · 52 · 11 · 19



Data for elliptic curve 83600cm1

Field Data Notes
Atkin-Lehner 2- 5- 11+ 19+ Signs for the Atkin-Lehner involutions
Class 83600cm Isogeny class
Conductor 83600 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 4233600 Modular degree for the optimal curve
Δ -6.8435203015168E+21 Discriminant
Eigenvalues 2- -2 5-  3 11+  0  2 19+ Hecke eigenvalues for primes up to 20
Equation [0,1,0,4125792,-2330374412] [a1,a2,a3,a4,a6]
Generators [605587384545253548:7234274064637184111258:4243659659] Generators of the group modulo torsion
j 4854288821119295/4277200188448 j-invariant
L 4.8086751836064 L(r)(E,1)/r!
Ω 0.07316407346663 Real period
R 32.862270755056 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 10450bf1 83600bh1 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations