Cremona's table of elliptic curves

Curve 8418d1

8418 = 2 · 3 · 23 · 61



Data for elliptic curve 8418d1

Field Data Notes
Atkin-Lehner 2- 3+ 23- 61+ Signs for the Atkin-Lehner involutions
Class 8418d Isogeny class
Conductor 8418 Conductor
∏ cp 22 Product of Tamagawa factors cp
deg 4576 Modular degree for the optimal curve
Δ -232740864 = -1 · 211 · 34 · 23 · 61 Discriminant
Eigenvalues 2- 3+ -1  3  6 -6 -2 -1 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-181,1115] [a1,a2,a3,a4,a6]
Generators [-1:36:1] Generators of the group modulo torsion
j -656008386769/232740864 j-invariant
L 5.7706472988493 L(r)(E,1)/r!
Ω 1.6613333648262 Real period
R 0.1578865238616 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 67344s1 25254e1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations