Cremona's table of elliptic curves

Curve 84525bs1

84525 = 3 · 52 · 72 · 23



Data for elliptic curve 84525bs1

Field Data Notes
Atkin-Lehner 3- 5+ 7- 23+ Signs for the Atkin-Lehner involutions
Class 84525bs Isogeny class
Conductor 84525 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 89856 Modular degree for the optimal curve
Δ -178294921875 = -1 · 34 · 59 · 72 · 23 Discriminant
Eigenvalues  0 3- 5+ 7-  4  0  2  0 Hecke eigenvalues for primes up to 20
Equation [0,1,1,-6533,202094] [a1,a2,a3,a4,a6]
Generators [88:562:1] Generators of the group modulo torsion
j -40282095616/232875 j-invariant
L 7.0752636678585 L(r)(E,1)/r!
Ω 1.0193432646802 Real period
R 0.43381262672446 Regulator
r 1 Rank of the group of rational points
S 1.0000000001275 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 16905g1 84525b1 Quadratic twists by: 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations