Cremona's table of elliptic curves

Curve 84525f1

84525 = 3 · 52 · 72 · 23



Data for elliptic curve 84525f1

Field Data Notes
Atkin-Lehner 3+ 5+ 7+ 23- Signs for the Atkin-Lehner involutions
Class 84525f Isogeny class
Conductor 84525 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 774144 Modular degree for the optimal curve
Δ -1286541448171875 = -1 · 33 · 56 · 78 · 232 Discriminant
Eigenvalues  0 3+ 5+ 7+  6 -5  6 -1 Hecke eigenvalues for primes up to 20
Equation [0,-1,1,-371583,87324068] [a1,a2,a3,a4,a6]
j -62992384000/14283 j-invariant
L 1.8833909315552 L(r)(E,1)/r!
Ω 0.47084769947479 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 3381i1 84525cg1 Quadratic twists by: 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations