Cremona's table of elliptic curves

Curve 8464s1

8464 = 24 · 232



Data for elliptic curve 8464s1

Field Data Notes
Atkin-Lehner 2- 23- Signs for the Atkin-Lehner involutions
Class 8464s Isogeny class
Conductor 8464 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 20160 Modular degree for the optimal curve
Δ -146717278208 = -1 · 219 · 234 Discriminant
Eigenvalues 2- -3 -2 -2  4  4  1 -7 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-10051,-388286] [a1,a2,a3,a4,a6]
Generators [161:1472:1] Generators of the group modulo torsion
j -97967097/128 j-invariant
L 1.9994916791021 L(r)(E,1)/r!
Ω 0.23838735936708 Real period
R 0.69896452158466 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 1058e1 33856bq1 76176cb1 8464r1 Quadratic twists by: -4 8 -3 -23


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations