Cremona's table of elliptic curves

Curve 84800k1

84800 = 26 · 52 · 53



Data for elliptic curve 84800k1

Field Data Notes
Atkin-Lehner 2+ 5+ 53+ Signs for the Atkin-Lehner involutions
Class 84800k Isogeny class
Conductor 84800 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 86400 Modular degree for the optimal curve
Δ 33125000000 = 26 · 510 · 53 Discriminant
Eigenvalues 2+ -2 5+  3  5 -6  3 -6 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-833,-3287] [a1,a2,a3,a4,a6]
Generators [-214:191:8] Generators of the group modulo torsion
j 102400/53 j-invariant
L 4.680567931803 L(r)(E,1)/r!
Ω 0.94008761737681 Real period
R 4.9788635103345 Regulator
r 1 Rank of the group of rational points
S 0.99999999938647 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 84800br1 1325d1 84800bl1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations