Cremona's table of elliptic curves

Curve 85952g2

85952 = 26 · 17 · 79



Data for elliptic curve 85952g2

Field Data Notes
Atkin-Lehner 2+ 17+ 79- Signs for the Atkin-Lehner involutions
Class 85952g Isogeny class
Conductor 85952 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 6043326832084779008 = 229 · 172 · 794 Discriminant
Eigenvalues 2+ -2  0 -4  2  6 17+ -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-840513,271712287] [a1,a2,a3,a4,a6]
Generators [-694:22831:1] [699:5120:1] Generators of the group modulo torsion
j 250505699702316625/23053462341632 j-invariant
L 7.3547689824103 L(r)(E,1)/r!
Ω 0.23275104196672 Real period
R 3.949911953255 Regulator
r 2 Rank of the group of rational points
S 1.0000000000048 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 85952p2 2686d2 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations