Cremona's table of elliptic curves

Curve 86190bu1

86190 = 2 · 3 · 5 · 132 · 17



Data for elliptic curve 86190bu1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 13+ 17- Signs for the Atkin-Lehner involutions
Class 86190bu Isogeny class
Conductor 86190 Conductor
∏ cp 28 Product of Tamagawa factors cp
deg 125798400 Modular degree for the optimal curve
Δ -9.2362111883779E+29 Discriminant
Eigenvalues 2- 3+ 5+ -2  1 13+ 17- -2 Hecke eigenvalues for primes up to 20
Equation [1,1,1,1451374954,-41049092752621] [a1,a2,a3,a4,a6]
Generators [5843129501:12240295480873:1331] Generators of the group modulo torsion
j 414491631408272360789951/1132262271188620848000 j-invariant
L 6.9942248312392 L(r)(E,1)/r!
Ω 0.014375469838557 Real period
R 17.376388165265 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 86190p1 Quadratic twists by: 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations