Cremona's table of elliptic curves

Curve 86950k1

86950 = 2 · 52 · 37 · 47



Data for elliptic curve 86950k1

Field Data Notes
Atkin-Lehner 2+ 5- 37+ 47- Signs for the Atkin-Lehner involutions
Class 86950k Isogeny class
Conductor 86950 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 2916000 Modular degree for the optimal curve
Δ -13391134720000 = -1 · 218 · 54 · 37 · 472 Discriminant
Eigenvalues 2+ -2 5-  2  0 -2 -6  5 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-16232901,25172072048] [a1,a2,a3,a4,a6]
Generators [2323:-906:1] Generators of the group modulo torsion
j -756888795693780247195225/21425815552 j-invariant
L 2.9806571089639 L(r)(E,1)/r!
Ω 0.37343461117226 Real period
R 0.6651448076244 Regulator
r 1 Rank of the group of rational points
S 0.99999999921571 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 86950u1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations