Cremona's table of elliptic curves

Curve 8700t1

8700 = 22 · 3 · 52 · 29



Data for elliptic curve 8700t1

Field Data Notes
Atkin-Lehner 2- 3- 5- 29- Signs for the Atkin-Lehner involutions
Class 8700t Isogeny class
Conductor 8700 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 10080 Modular degree for the optimal curve
Δ -252300000000 = -1 · 28 · 3 · 58 · 292 Discriminant
Eigenvalues 2- 3- 5-  3 -6  1  0  3 Hecke eigenvalues for primes up to 20
Equation [0,1,0,667,23463] [a1,a2,a3,a4,a6]
Generators [9:174:1] Generators of the group modulo torsion
j 327680/2523 j-invariant
L 5.4609155817726 L(r)(E,1)/r!
Ω 0.7183540033699 Real period
R 1.2669973198346 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 34800cr1 26100bf1 8700h1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations