Cremona's table of elliptic curves

Curve 87232o1

87232 = 26 · 29 · 47



Data for elliptic curve 87232o1

Field Data Notes
Atkin-Lehner 2- 29+ 47- Signs for the Atkin-Lehner involutions
Class 87232o Isogeny class
Conductor 87232 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 22016 Modular degree for the optimal curve
Δ -5582848 = -1 · 212 · 29 · 47 Discriminant
Eigenvalues 2- -2  0 -1 -3 -2  6 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-1193,-16265] [a1,a2,a3,a4,a6]
Generators [81:652:1] Generators of the group modulo torsion
j -45882712000/1363 j-invariant
L 3.1879905473798 L(r)(E,1)/r!
Ω 0.40614241040627 Real period
R 3.9247200804965 Regulator
r 1 Rank of the group of rational points
S 1.000000000017 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 87232l1 43616f1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations