Cremona's table of elliptic curves

Curve 88150c1

88150 = 2 · 52 · 41 · 43



Data for elliptic curve 88150c1

Field Data Notes
Atkin-Lehner 2+ 5+ 41- 43+ Signs for the Atkin-Lehner involutions
Class 88150c Isogeny class
Conductor 88150 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 294912 Modular degree for the optimal curve
Δ 74032226562500 = 22 · 512 · 41 · 432 Discriminant
Eigenvalues 2+  0 5+  2  2  2  4 -2 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-41567,-3225159] [a1,a2,a3,a4,a6]
j 508341548472129/4738062500 j-invariant
L 1.3381851488219 L(r)(E,1)/r!
Ω 0.3345462870119 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 17630f1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations