Cremona's table of elliptic curves

Curve 88305i1

88305 = 3 · 5 · 7 · 292



Data for elliptic curve 88305i1

Field Data Notes
Atkin-Lehner 3+ 5- 7+ 29- Signs for the Atkin-Lehner involutions
Class 88305i Isogeny class
Conductor 88305 Conductor
∏ cp 40 Product of Tamagawa factors cp
deg 752640 Modular degree for the optimal curve
Δ 1984701290315625 = 312 · 55 · 72 · 293 Discriminant
Eigenvalues -1 3+ 5- 7+  6 -2 -6 -2 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-99560,-11941360] [a1,a2,a3,a4,a6]
Generators [-172:448:1] Generators of the group modulo torsion
j 4474913603501069/81376903125 j-invariant
L 3.6003058230405 L(r)(E,1)/r!
Ω 0.26906531899693 Real period
R 1.3380787400211 Regulator
r 1 Rank of the group of rational points
S 0.99999999799256 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 88305w1 Quadratic twists by: 29


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations