Cremona's table of elliptic curves

Curve 88445p1

88445 = 5 · 72 · 192



Data for elliptic curve 88445p1

Field Data Notes
Atkin-Lehner 5+ 7- 19- Signs for the Atkin-Lehner involutions
Class 88445p Isogeny class
Conductor 88445 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 552960 Modular degree for the optimal curve
Δ 3680709067756385 = 5 · 77 · 197 Discriminant
Eigenvalues -1  0 5+ 7- -4 -2 -2 19- Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-250963,-48239838] [a1,a2,a3,a4,a6]
Generators [16770:151807:27] Generators of the group modulo torsion
j 315821241/665 j-invariant
L 1.5071203187003 L(r)(E,1)/r!
Ω 0.21333013413308 Real period
R 7.064732446418 Regulator
r 1 Rank of the group of rational points
S 0.99999999886643 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 12635c1 4655d1 Quadratic twists by: -7 -19


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations