Cremona's table of elliptic curves

Curve 88450o1

88450 = 2 · 52 · 29 · 61



Data for elliptic curve 88450o1

Field Data Notes
Atkin-Lehner 2- 5+ 29- 61+ Signs for the Atkin-Lehner involutions
Class 88450o Isogeny class
Conductor 88450 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 497280 Modular degree for the optimal curve
Δ -6906176000000 = -1 · 212 · 56 · 29 · 612 Discriminant
Eigenvalues 2- -3 5+  4 -1 -5  0  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-11130,-466503] [a1,a2,a3,a4,a6]
Generators [145:903:1] Generators of the group modulo torsion
j -9757815386409/441995264 j-invariant
L 6.9623737345347 L(r)(E,1)/r!
Ω 0.23179333773372 Real period
R 1.2515411708701 Regulator
r 1 Rank of the group of rational points
S 1.0000000010289 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 3538c1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations