Cremona's table of elliptic curves

Curve 88740k1

88740 = 22 · 32 · 5 · 17 · 29



Data for elliptic curve 88740k1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 17- 29- Signs for the Atkin-Lehner involutions
Class 88740k Isogeny class
Conductor 88740 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 334080 Modular degree for the optimal curve
Δ -131970578400000 = -1 · 28 · 39 · 55 · 172 · 29 Discriminant
Eigenvalues 2- 3- 5+  4 -3 -4 17- -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-18048,1084628] [a1,a2,a3,a4,a6]
Generators [61:459:1] Generators of the group modulo torsion
j -3483721793536/707146875 j-invariant
L 6.1820717350997 L(r)(E,1)/r!
Ω 0.56008840604021 Real period
R 1.3797089143563 Regulator
r 1 Rank of the group of rational points
S 1.0000000003186 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 29580a1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations