Cremona's table of elliptic curves

Curve 88825l3

88825 = 52 · 11 · 17 · 19



Data for elliptic curve 88825l3

Field Data Notes
Atkin-Lehner 5+ 11- 17+ 19- Signs for the Atkin-Lehner involutions
Class 88825l Isogeny class
Conductor 88825 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ -1171965203857421875 = -1 · 514 · 112 · 174 · 19 Discriminant
Eigenvalues  1  0 5+  0 11- -6 17+ 19- Hecke eigenvalues for primes up to 20
Equation [1,-1,0,212458,-35999509] [a1,a2,a3,a4,a6]
Generators [514:14193:1] Generators of the group modulo torsion
j 67876869278132559/75005773046875 j-invariant
L 5.3760685994017 L(r)(E,1)/r!
Ω 0.14795102287844 Real period
R 2.2710507897485 Regulator
r 1 Rank of the group of rational points
S 4.0000000013145 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 17765g4 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations