Cremona's table of elliptic curves

Curve 89001i1

89001 = 32 · 11 · 29 · 31



Data for elliptic curve 89001i1

Field Data Notes
Atkin-Lehner 3- 11- 29- 31+ Signs for the Atkin-Lehner involutions
Class 89001i Isogeny class
Conductor 89001 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 603648 Modular degree for the optimal curve
Δ 463575347102241 = 318 · 113 · 29 · 31 Discriminant
Eigenvalues -1 3-  2 -4 11-  2 -6  4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-226544,41546378] [a1,a2,a3,a4,a6]
j 1763811134291985337/635905825929 j-invariant
L 1.5501091965751 L(r)(E,1)/r!
Ω 0.51670308341518 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 29667c1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations