Cremona's table of elliptic curves

Curve 89376z1

89376 = 25 · 3 · 72 · 19



Data for elliptic curve 89376z1

Field Data Notes
Atkin-Lehner 2+ 3- 7- 19- Signs for the Atkin-Lehner involutions
Class 89376z Isogeny class
Conductor 89376 Conductor
∏ cp 20 Product of Tamagawa factors cp
deg 165120 Modular degree for the optimal curve
Δ -225176039424 = -1 · 212 · 310 · 72 · 19 Discriminant
Eigenvalues 2+ 3-  2 7- -5  4  5 19- Hecke eigenvalues for primes up to 20
Equation [0,1,0,-23277,-1374885] [a1,a2,a3,a4,a6]
j -6949720863232/1121931 j-invariant
L 3.865111810972 L(r)(E,1)/r!
Ω 0.19325558174463 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 89376i1 89376b1 Quadratic twists by: -4 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations