Cremona's table of elliptic curves

Curve 8979b4

8979 = 3 · 41 · 73



Data for elliptic curve 8979b4

Field Data Notes
Atkin-Lehner 3+ 41- 73- Signs for the Atkin-Lehner involutions
Class 8979b Isogeny class
Conductor 8979 Conductor
∏ cp 2 Product of Tamagawa factors cp
Δ -845311602687633 = -1 · 324 · 41 · 73 Discriminant
Eigenvalues -1 3+ -2  4  0  2  6  4 Hecke eigenvalues for primes up to 20
Equation [1,1,1,4891,-1390588] [a1,a2,a3,a4,a6]
Generators [1830177201888:-27981432360757:8193540096] Generators of the group modulo torsion
j 12939310986095663/845311602687633 j-invariant
L 2.4993980777049 L(r)(E,1)/r!
Ω 0.23888918299556 Real period
R 20.925167446793 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 26937b3 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations