Cremona's table of elliptic curves

Curve 91200dw1

91200 = 26 · 3 · 52 · 19



Data for elliptic curve 91200dw1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 19- Signs for the Atkin-Lehner involutions
Class 91200dw Isogeny class
Conductor 91200 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 12288 Modular degree for the optimal curve
Δ 1459200 = 210 · 3 · 52 · 19 Discriminant
Eigenvalues 2+ 3- 5+  3 -4  4  4 19- Hecke eigenvalues for primes up to 20
Equation [0,1,0,-33,-57] [a1,a2,a3,a4,a6]
Generators [-230:117:125] Generators of the group modulo torsion
j 160000/57 j-invariant
L 9.9520815888327 L(r)(E,1)/r!
Ω 2.0454852230118 Real period
R 4.8653891419254 Regulator
r 1 Rank of the group of rational points
S 0.99999999947976 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 91200fj1 11400b1 91200cf1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations