Cremona's table of elliptic curves

Curve 91200fu1

91200 = 26 · 3 · 52 · 19



Data for elliptic curve 91200fu1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 19- Signs for the Atkin-Lehner involutions
Class 91200fu Isogeny class
Conductor 91200 Conductor
∏ cp 5 Product of Tamagawa factors cp
deg 322560 Modular degree for the optimal curve
Δ 138629849932800 = 210 · 37 · 52 · 195 Discriminant
Eigenvalues 2- 3+ 5+ -1 -4  0 -4 19- Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-40953,-3125583] [a1,a2,a3,a4,a6]
Generators [-112:209:1] Generators of the group modulo torsion
j 296723207944960/5415228513 j-invariant
L 3.6244118956352 L(r)(E,1)/r!
Ω 0.33597610182996 Real period
R 2.1575414862622 Regulator
r 1 Rank of the group of rational points
S 1.0000000014295 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 91200cq1 22800ct1 91200jb1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations