Cremona's table of elliptic curves

Curve 91200hn1

91200 = 26 · 3 · 52 · 19



Data for elliptic curve 91200hn1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 19+ Signs for the Atkin-Lehner involutions
Class 91200hn Isogeny class
Conductor 91200 Conductor
∏ cp 14 Product of Tamagawa factors cp
deg 2580480 Modular degree for the optimal curve
Δ -3.840162048E+19 Discriminant
Eigenvalues 2- 3- 5+  0  5  4  4 19+ Hecke eigenvalues for primes up to 20
Equation [0,1,0,739167,-170229537] [a1,a2,a3,a4,a6]
Generators [3669:227916:1] Generators of the group modulo torsion
j 17446602575/15000633 j-invariant
L 9.585026265379 L(r)(E,1)/r!
Ω 0.11294897884382 Real period
R 6.061539819305 Regulator
r 1 Rank of the group of rational points
S 1.0000000006276 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 91200z1 22800cb1 91200gr1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations