Cremona's table of elliptic curves

Curve 91504d1

91504 = 24 · 7 · 19 · 43



Data for elliptic curve 91504d1

Field Data Notes
Atkin-Lehner 2- 7+ 19- 43+ Signs for the Atkin-Lehner involutions
Class 91504d Isogeny class
Conductor 91504 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 95424 Modular degree for the optimal curve
Δ -2998403072 = -1 · 219 · 7 · 19 · 43 Discriminant
Eigenvalues 2- -3  4 7+  2  2 -6 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,197,2410] [a1,a2,a3,a4,a6]
Generators [45:320:1] Generators of the group modulo torsion
j 206425071/732032 j-invariant
L 5.7580530730406 L(r)(E,1)/r!
Ω 1.0113787856674 Real period
R 1.4233176398764 Regulator
r 1 Rank of the group of rational points
S 1.0000000014053 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 11438a1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations