Cremona's table of elliptic curves

Curve 91632l1

91632 = 24 · 3 · 23 · 83



Data for elliptic curve 91632l1

Field Data Notes
Atkin-Lehner 2- 3+ 23- 83+ Signs for the Atkin-Lehner involutions
Class 91632l Isogeny class
Conductor 91632 Conductor
∏ cp 14 Product of Tamagawa factors cp
deg 448000 Modular degree for the optimal curve
Δ 10417785278091264 = 212 · 32 · 237 · 83 Discriminant
Eigenvalues 2- 3+  1  2  4  0  2  5 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-77285,6679629] [a1,a2,a3,a4,a6]
Generators [316:3703:1] Generators of the group modulo torsion
j 12463930461270016/2543404608909 j-invariant
L 7.5638932151846 L(r)(E,1)/r!
Ω 0.38461350517945 Real period
R 1.4047298898658 Regulator
r 1 Rank of the group of rational points
S 1.0000000000505 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 5727g1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations